
2460 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Automatic Identification of Individual African
Leopards in Unlabeled Camera Trap Images

Cheng Guo , Student Member, IEEE, Agnieszka Miguel, Senior Member, IEEE,
and Anthony A. Maciejewski , Fellow, IEEE

Abstract— This article describes an algorithm to solve the
real-world animal identification problem, i.e., determine the
unknown number of K individual animals in a dataset of N
unlabeled camera-trap images of African leopards, provided by
Panthera. To determine the leopards’ IDs, we propose an effective
automated algorithm, that consists of segmenting leopard bodies
from images, scoring similarity between image pairs, and cluster-
ing followed by verification. To perform clustering, we employ a
modified ternary search that uses a novel adaptive k-medoids++

clustering algorithm. The best clustering is determined using
an expanded definition of the silhouette score. A new post-
clustering verification procedure is used to further improve the
quality of a clustering. The algorithm was evaluated using the
Panthera dataset that consists of 677 individual leopards taken
from 1555 images, and resulted in a clustering with an adjusted
mutual information score of 0.958 as compared to 0.864 using a
baseline k-medoids++ clustering algorithm.

Note to Practitioners—We proposed an effective automated
algorithm to solve the real-world animal identification problem:
identifying K unknown individual animals in N images of a
given species, with most animals only represented by a single
image. This algorithm is different from other methods that
assume all images in a dataset are from known individuals and
thus regard the animal ID problem as a retrieval identification
task. Our approach consists of a new adaptive k-medoids++

clustering algorithm and a novel post-clustering verification
procedure. The clustering is performed based on the degree
of similarity between all image pairs in the dataset with the
result validated using an expanded definition of the silhouette
score. The accuracy of our algorithm was demonstrated on a
real-world image dataset of African leopards, a small dataset
with a relatively large ratio of K/N , provided by Panthera. Code
has been made available at: https://github.com/obaiga/Automatic-
individual-animal-identification.

Index Terms— Computer vision for automation, robotics and
automation in life sciences, object detection, segmentation and
categorization, automated animal identification, camera-trap
images, clustering.

Manuscript received 11 August 2023; revised 27 December 2023 and
16 February 2024; accepted 11 March 2024. Date of publication 26 March
2024; date of current version 7 February 2025. This article was recommended
for publication by Associate Editor Z. Liu and Editor L. Zhang upon
evaluation of the reviewers’ comments. (Corresponding author: Cheng Guo.)

Cheng Guo and Anthony A. Maciejewski are with the Department of
Electrical and Computer Engineering, Colorado State University, Fort Collins,
CO 80523 USA (e-mail: Cheng.Guo@colostate.edu; aam@colostate.edu).

Agnieszka Miguel is with the Department of Electrical and Com-
puter Engineering, Seattle University, Seattle, WA 98122 USA (e-mail:
amiguel@seattleu.edu).

Digital Object Identifier 10.1109/TASE.2024.3379553

I. INTRODUCTION

FOR wild animals that are elusive and seldom seen, camera
traps offer a low-cost and non-invasive method to obtain a

large number of images that may contain animal information.
Camera traps consist of numerous cameras at fixed locations
throughout suspected habitats. The cameras are automatically
activated by motion or infrared sensors, so that they may be
triggered by moving animals, swaying vegetation, or sudden
changes in the weather. Therefore, captured images not only
contain a variety of animals, but frequently consist only of
rocks and vegetation. At present, deep learning is an effective
solution to classifying different species in a set of images [1],
however, automatically identifying the individual animals from
the same species, referred to as animal identification (or animal
ID), is one of the current challenges in ecology [2].

Currently, animal ID is treated as an extension of the object
or face recognition problem [3], [4], [5]. It is important to note
that most works [6], [7], [8] assume that the individual animal
dataset for a given species is a closed set. Thus the animal ID
problem is regarded as a retrieval identification problem (Re-
ID), i.e., given a new image, assign it an animal ID from the
known dataset. This implies that there is at least one image for
each individual animal label in the dataset. Recent works [9],
[10] consider the case where new images may not correspond
to known individuals, i.e., the individual animal dataset is an
open set. Unfortunately, these techniques still do not address
the “real-world problem” where a labeled dataset does not
exist and even the number of classes is unknown. In addition,
it is likely that, in a given camera trap dataset, there will be
many animals for which only a single image is available.

In this paper, we consider the problem of automatically
identifying an unknown number of K individual animals in
a given dataset of N unlabeled camera trap images of African
leopards, provided by Panthera [11]. Several factors result in
N being relatively small, and K/N being relatively large.
These factors include the behavior of African leopards, the
location of camera traps, and that only one image is taken
when a trap is activated (due to the limitations of the flash
technology). In addition, the images have a wide variation in
viewpoints, exposures, occlusions, and quality [12]. To for-
mally state the problem under consideration: Given a set of
images I with the following properties (1) |I| = N is small
and (2) every image Ix ∈ I is known to contain exactly one
leopard from an unknown number of K leopards whose images

1558-3783 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6642-4311
https://orcid.org/0000-0002-1376-5825

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2461

do not exist outside of I; determine K and the subsets Ci ,
where 1 ≤ i ≤ K , that consist of unique individuals and⋃K

i=1 Ci = I.
The main contribution of this paper is the design of an

effective algorithm to solve the real-world animal identification
problem as distinct from the animal Re-ID problem. That is,
given an unlabeled image dataset of African leopards, the
algorithm groups the images into subsets of individual leop-
ards, and thus determines the number of distinct individuals
in the dataset. Because traditional unsupervised techniques
result in unacceptably low accuracy when applied to animal ID
problems [13], we (1) develop a novel adaptive k-medoids++
clustering algorithm, (2) design a novel post-clustering verifi-
cation procedure to further improve accuracy, and (3) define
the silhouette score of a single-item cluster to measure and
enhance the clustering performance.

The remainder of this paper is organized as follows.
Section II reviews related work on the animal identification
problem and provides background on existing techniques used
by our algorithm. The next section explains the details of our
new algorithm for automatically identifying individual African
leopards in unlabeled images. The evaluation of the algorithm
is given in Section IV. Finally, Section V concludes this article.

II. BACKGROUND

A. Related Literature on Animal ID

There are several computer vision techniques that are
frequently used to solve the animal identification problem,
e.g., segmentation, feature extraction, and classification [3].
The goal of segmentation is to separate the animal from
the background. Segmentation techniques range from manual
extraction [12], [14] and classical image processing algo-
rithms [15], [16], to deep learning methods [7]. The choice of
feature extraction technique frequently depends on the animal
being identified. For animals with unique identifiable mark-
ings, such as leopards, zebras, and tigers, traditional feature
extraction methods can be used, e.g., Local Binary Pattern
(LBP) [15] or Scale-Invariant Feature Transform (SIFT) [12],
[14]. For animals without distinctive identifiable markings,
such as bears, wolves, and sheep, deep learning methods
are more frequently employed, e.g., Convolutional Neural
Networks (CNN) [6]. Similarly, the type of classification
model employed is generally determined by the size of the
animal image dataset, more specifically, the quantity of images
corresponding to individual animals. If there are only a small
number of images for some individual animals, then it is
common to employ a matching score mechanism between
image pairs [12], [17]. The magnitude of this matching score
determines if the image pair represents the same individual.
For cases where there are a large number of images for
each individual, machine learning techniques are frequently
employed, e.g., Support Vector Machine (SVM) [6] or Siamese
and Triplet-Loss networks [7], [18].

The above classification techniques all apply to closed sets.
As previously discussed, techniques that require a closed-set
assumption are too restrictive for the problem considered here
because they can not handle images of individuals that are not
already in the classified set. It is, in general, possible to apply

a number of traditional unsupervised learning approaches to
open set problems [3], [19]. However, to be effective the
datasets on which they operate must contain large numbers
of images for each of the individuals. Unfortunately, that is
not true for the animal identification problem that we consider
here. For most of individuals in the dataset only a single image
exists. The closed-set assumption has been extended to include
an additional “unknown identity” class [9], however, this
does not address the classification of multiple new unknown
individuals. To address this issue, Stewart et al. [10] treat the
animal ID problem as a continual curation problem. In their
work, they allow the algorithm to ask for human assistance
when a new image does not sufficiently match an existing
individual in the already classified dataset.

The goal of our work is to solve the real-world automated
animal identification problem, i.e., to develop an algorithm
that identifies all individuals in an unlabeled African leopard
image dataset without expert assistance. Our new algorithm
uses existing segmentation and feature extraction techniques,
however, the classification approaches discussed above are not
applicable to unlabeled datasets. Therefore, we develop an
adaptive clustering algorithm to group the images into classes
of individual leopards.

B. Background on Hotspotter

We use the feature extraction technique from Hotspotter [12]
to compute an N × N similarity score matrix for the N
images in an African leopard image dataset. Hotspotter uses a
variant of SIFT (scale-invariance feature transform) [20], [21]
to identify all keypoints in an image, which are typically the
locations of corners or edges. Each keypoint is associated with
a descriptor, which is a vector of the histogram of oriented
gradients in a neighborhood around the keypoint.

To compare two images (Iq and Id from a set of images
I), for every descriptor (dq) in the first image (Iq), Hotspotter
uses the Euclidean distance to find the two nearest neighbor
descriptors (dnn and dnn2) from all other images in the dataset.
Then, Hotspotter calculates the similarity score, denoted δ(dq),
for the descriptor dq with the two nearest neighbor descriptors
using

δ(dq) =
∥∥dnn2 − dq

∥∥2
−

∥∥dnn − dq
∥∥2

, (1)

where dnn, dnn2 ∈ (Dall − Dq). The variables Dall and Dq

are sets of descriptors from all images in the dataset I and
the image Iq , respectively. Finally, a similarity score, denoted
1(Iq , Id), between the two images Iq and Id is calculated by
summing the similarity scores for all qualified descriptor pairs.
A qualified descriptor pair is defined as a descriptor pair where
dnn is from the second image Id . That is,

1(Iq , Id) =
∑

dq∈Dq

δ(dq), only if dnn ∈ Dd , (2)

where Dd is a set of descriptors from the image Id .

C. Background on Clustering

Our algorithm, presented in Section III, builds on the classic
k-means clustering method [22]. The baseline clustering tech-
nique, against which we evaluate our approach, is presented

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

2462 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

in Algorithm 1 and referred to as k-medoids++. It consists
of k-medoids clustering [23] combined with the initialization
used in k-means++ [24].

The input to a basic k-means algorithm includes the desired
number of clusters, k, and a set of data points with known
locations to be clustered. In our case, the points are images in
the set I with unknown positions but known distances between
each other, so that there is no easy way to compute a cluster
mean. This is why we use k-medoids clustering instead, where
a cluster medoid, denoted Mi , is defined as the data point
Ix that has the minimum within-cluster variation in a given
cluster, denoted Ci , i.e.,

Mi = arg min
Ix∈Ci

 ∑
Iy∈Ci

∥∥Ix , Iy
∥∥2

, (3)

where Iy is a data point in the cluster Ci , and
∥∥Ix − Iy

∥∥2 is the
squared Euclidean distance between two data points Ix and Iy .
In our work, where Ix and Iy are images, we use the similarity
score given by (2) instead of the Euclidean distance.

We modify the k-medoids algorithm to add an initialization
step that is analogous to that used in k-means++. Let the set
of cluster medoids be denoted M = {M1, . . . , Mi , . . . , Mk},
where Mi is the i th initial cluster medoid. The first initial
medoid M1 is chosen randomly with uniform probability. That
is, the probability P1 of any data point Ix being chosen as M1 is

P1 =
1
N

. (4)

After which, each subsequent initial medoid Mi is randomly
picked from the remaining data points with the probability
proportional to the squared distance between a data point and
the nearest medoid in {M1, . . . , Mi−1}. That is, the probability
Pi of a data point Ix being chosen as Mi is

Pi =

∥∥Ix , Mox

∥∥2∑
Iy∈I

∥∥Iy, Moy

∥∥2 , (5)

where the variables Mox and Moy are the nearest medoids in
{M1, . . . , Mi−1} for data points Ix and Iy , respectively.

D. Background on Silhouette Score

The silhouette score is frequently used to evaluate the qual-
ity of a given clustering when dataset labels are not available.
In Section III, we develop an extended silhouette score for
our proposed algorithm to evaluate and improve the clustering
performance. Here we review the standard definition.

To calculate the silhouette score of an image, the mean
similarity score of the image with any cluster in a given
clustering is computed first. Assume an image Ix is in an
image dataset I, and a cluster Ci is within a clustering C for
the set I. The mean similarity score of the image Ix with the
cluster Ci , denoted 1̄i , is

1̄i =
1
|Ci |

 ∑
Iy∈Ci

1(Ix , Iy)
2

, (6)

Algorithm 1 A k-Medoids++ Clustering Algorithm
Given: Distance matrix of a set of data points I

Number of clusters, k
Result: Clustering, C = {C1, · · · , Ci , · · · , Ck}

1 /*k-means++ initialization*/
2 Initialize a set of clustering medoids, M← { }
3 Choose M1 randomly from I using (4)
4 M←M ∪ M1, C1 ← M1
5 for i = 2 : k do
6 Choose Mi randomly from (I −M) using (5)
7 M←M ∪ Mi , Ci ← Mi

8 /*k-medoids clustering*/
9 repeat

10 for each Ix ∈ (I −M) do
11 Determine the cluster with the nearest medoid, Co
12 Co ← Co ∪ Ix

13 for each Ci ∈ C do
14 Select Mi using (3)

15 until M does not change;

for Ix /∈ Ci . If Ix ∈ Ci then Ix is left out of the mean
calculation. Unfortunately, (6) is not defined if |Ci | = 1, and
so the silhouette score is not applicable to single-item clusters.

The silhouette score measures the degree to which an item
belongs to the cluster it has been assigned by comparing the
difference between the mean similarity scores for its cluster
with the nearest neighbor cluster [25]. The nearest neighbor
cluster for an image Ix is defined as a cluster with the largest
value of 1̄i , other than its own cluster. That is, the silhouette
score of the image Ix , denoted sx , is given by

sx =
1̄o − 1̄nn

max
{
1̄o, 1̄nn

}
+ ϵ

, (7)

where 1̄o and 1̄nn are the mean similarity scores of the
image Ix with its cluster Co and its nearest neighbor cluster
Cnn, respectively, and ϵ is required to avoid division by zero.
Thus, the silhouette score is in the range [−1, 1]. A value of
1 indicates maximum confidence that the image belongs to its
cluster while −1 indicates maximum confidence that it does
not. Finally, the mean silhouette score over all images within a
clustering C, denoted s̄, can be used for estimating the overall
quality of the clustering, i.e.,

s̄ =
1
|I|

∑
Ix∈I

sx

. (8)

It is important to note that because the silhouette score is
not defined for a single-item cluster, 0 is typically used as its
silhouette score. This indicates that there is no confidence in
whether the item should be by itself or included in a different
cluster [25]. Unfortunately, it is very common for African
leopard image datasets, resulting from camera traps, to include
many individuals that are represented by only a single image.
This means that using the standard silhouette score to evaluate
clustering of such datasets will be misleading. To address this
issue, we propose a novel method to calculate the silhouette
score of an image in a single-item cluster in Section III.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2463

Fig. 1. This figure illustrates the flowchart of our automated leopard individual identification algorithm for a small subset of our image dataset. It contains
four steps: segmenting by deep learning, scoring for all image pairs, clustering in terms of the similarity score matrix, and verifying a clustering by merging. In
(a) six representative unlabeled original images, numbered Images 1 to 6, are shown. Applying segmentation to these images results in (b). After segmentation,
the similarity scores between all images are computed. An example of this for Image 2 is displayed in (c). A line between two images indicates a qualified
descriptor pair between the images. For example, Images 2 and 4 have a high similarity score because there are a large number of lines between them. Images
with no qualified descriptor pairs are indicated with an “X”, i.e., Images 1, 3, and 5, and result in a similarity score of 0. The algorithm then uses these
similarity scores to perform clustering, the results of which are shown in (d). The internal colors around the leopard images represent the clusters assigned
after initial clustering. Unfortunately, clusterings will typically have errors, so the algorithm applies a post-clustering verification step. The results of this step
are shown in (d) using the external colors around the images to indicate the final clusters. That is, the final clustering results in 3 clusters, i.e., Leopard
1 containing Image 1, Leopard 2 including Images 3 and 5, and Leopard 3 having Images 2, 4, and 6.

III. AUTOMATED INDIVIDUAL LEOPARD IDENTIFICATION

A. Overview of the Automated Identification Algorithm

In this article, we design an effective algorithm to auto-
matically identify animal individuals in an unlabeled African
leopard image dataset.1 The goal is to label all images’ iden-
tities and determine the number of individuals in the dataset.
Our algorithm consists of four parts: segmenting leopard
objects from the background using deep learning, scoring
similarity for image pairs using Hotspotter, clustering in terms
of an N × N similarity score matrix, and verifying the initial
clustering to generate an improved clustering. A flowchart is
shown in Fig. 1. More specifically, we first use a standard
mask region-based CNN (mask R-CNN) [26] model to seg-
ment leopard objects from the background in images. Then,
we apply Hotspotter [12] to generate the N × N similarity
score matrix for all images in the dataset, as described in
the previous section. Next, we design a novel adaptive k-
medoids++ clustering algorithm that uses silhouette score
feedback to generate a clustering. In addition, we propose a
new definition for the silhouette score of a single-item cluster
to better represent the quality of a clustering. This allows our
algorithm to ultimately converge to a more accurate clustering.
Finally, we develop a post-clustering verification procedure to
deal with the inherent limitations of medoid-based clustering
approaches and generate an improved result.

In the following subsections, we will elaborate on these
contributions.

B. Expanded Silhouette Method

Before discussing our new clustering algorithm, we first
describe our expanded definition of the silhouette score that
is used throughout our algorithm. As previously discussed,

1Code has been made available at:
https://github.com/obaiga/Automatic-individual-animal-identification

Fig. 2. This figure shows three typical relationships for an isolated image
with its top-2 nearest neighbor clusters based on their mean similarity scores.
A solid circle is used to represent an isolated image Ix and different colored
squares correspond to its nearest and second nearest neighbor clusters, Cnn
and Cnn2, respectively. The length of an arrow is proportional to the reciprocal
of the mean similarity score of the image with a cluster, labeled 1̄. In both
(a) and (b), the value of s′x is near 0 because the difference between 1̄nn and
1̄nn2 is small, however, they represent very different cases. In particular, the
image in (a) should stay isolated whereas the image in (b) may belong to
either cluster. In case (c), s′x is large and it is obvious that the isolated image
should join its nearest neighbor cluster.

the standard definition of the silhouette score provides no
information for single-image clusters, denoted Ciso, referred
to as isolated images, which are common in our dataset.
To address this issue, we present a novel approach to generate
a reasonable value for the confidence that an image belongs to
its single-image cluster. To do this, we first compute a value,
denoted s ′x , using (7) as if an isolated image Ix is included in
its nearest neighbor cluster Cnn, i.e.,

s ′x =
1̄nn − 1̄nn2

1̄nn + ϵ
, (9)

where Ix ∈ Ciso and 1̄nn2 is the mean similarity score of the
image with its second nearest neighbor cluster Cnn2.

It is important to note that s ′x is always in the range [0, 1].
This is true because for any image, the mean similarity score
with its second nearest neighbor cluster 1̄nn2 can not be
greater than the mean similarity score with its nearest neighbor
cluster 1̄nn. Fig. 2 illustrates three typical cases that occur.
In Fig. 2(a), it is clear that Ix should stay as an isolated cluster

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

2464 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

and so one would like its silhouette score to reflect this, i.e.,
sx = 1. In Fig. 2(b), it is not clear whether Ix should stay as an
isolated cluster, or be merged with one of its nearby neighbors,
therefore one would like a silhouette score value of sx = 0.
However, in both of these cases the value of s ′x ≈ 0 and thus
we cannot distinguish between these two situations. Therefore,
we set sx = 0.5 whenever s ′x is small, which our adaptive
k-medoids++ clustering algorithm will use to distinguish
between these two cases as discussed in the next subsection.
In contrast, the case shown in Fig. 2(c) is unambiguous.
It results in a “large” value of s ′x indicating a strong confidence
that the image belongs to its nearest neighbor cluster, and
thus sx should be a large negative value. We describe the
relationship between s ′x and sx mathematically as

sx =

{
−s ′x if s ′x ≥ T and Inn ∈ Cnn

0.5 otherwise,
(10)

where Ix ∈ Ciso, Inn is its nearest neighbor image, and we
define “large” using the following threshold

T =
1∑

Ci⊂C |Ci |

∑
Ci⊂C

∑
Iy∈Ci

sy

 if Iy ∈ Cniso, (11)

where Cniso is a cluster having more than one image. The value
of the threshold is the average silhouette score for all non-
isolated images. Intuitively, we only want to accept isolated
images into a cluster when it will make the overall clustering
better. In addition, we add the condition Inn ∈ Cnn because
the value of s ′x may be large due to 1̄nn2 ≈ 0 regardless
of the value of 1̄nn. By including isolated images in our
expanded definition of the silhouette score, we obtain a much
more accurate measure for the quality of a clustering.

Next we propose a measure of the quality of a cluster Ci ,
denoted s̄i , that is the mean silhouette score of all images in
the cluster, i.e.,

s̄i =
1
|Ci |

 ∑
Ix∈Ci

sx

. (12)

It is used as a feedback parameter in our novel adaptive k-
medoids++ clustering algorithm that is discussed in the next
subsection.

C. Adaptive k-Medoids++ Clustering

In general, the baseline k-medoids++ clustering algorithm,
described in section II, must be executed multiple times to
obtain a clustering that is satisfactory. Because the algorithm
is always started with the same probability distribution, there
is no learning from one execution to the next. To increase the
likelihood that subsequent executions find better clusterings,
we propose a technique to adaptively adjust the probability
of an image being selected as a medoid seed. In particular,
if a current cluster medoid results in a “good” cluster, its
probability of being selected as a medoid in future iterations is
increased. Likewise, if a medoid results in a “bad” cluster, its
probability of being selected as a medoid in future iterations
is decreased. We quantify what is considered a “good” or
“bad” cluster using the value of the cluster’s mean silhouette

Algorithm 2 Adaptive k-Medoids++ Clustering
Given : Similarity score matrix for an image dataset I

Number of clusters, k
Result : Best clustering, C∗(k)

1 Best mean silhouette score of a clustering, s̄∗(k)← 0
2 Iteration, j ← 0
3 Weight factors, W(j) =

{
w1(j), · · · , w|I|(j)

}
← {1, · · · , 1}

4 repeat
5 j ← j + 1
6 Generate M and C using Algorithm 1 with (13), (14), (16)
7 Calculate mean silhouette score s̄ of a clustering C
8 if s̄ > s̄∗(k) then
9 for each Ix ∈ I do

10 if Ix isanyclustermedoidMi then
11 wx (j)← wx (j − 1) ·

(
s̄i + 1

)
12 else
13 wx (j)← wx (j − 1)

14 C∗(k)← C, s̄∗(k)← s̄
15 else
16 W(j)←W(j − 1)

17 until C∗(k) does not change for a specific iteration number;

score. We define the current best clustering, denoted C∗, as the
clustering with the highest mean silhouette score, denoted s̄∗.
Our algorithm terminates when s̄∗ does not improve for a
specified number of iterations. The pseudocode is shown in
Algorithm 2.

To calculate the probability that an image will be chosen as
an initial cluster medoid at the next iteration, denoted (j +1),
we introduce a weight factor for the image in (4) and (5), i.e.,
the probability P1(j + 1) that an image Ix is selected as the
first medoid M1 is given by

P1(j + 1) =
wx (j)∑

Iy∈I wy(j)
, (13)

where wx (j) and wy(j) are the weight factors for the images
Ix and Iy at iteration j , respectively. After which, the prob-
ability Pi (j + 1) of image Ix being chosen as a subsequent
cluster medoid seed Mi is given by

Pi (j + 1) =

1
1(Ix ,Mox)2+ϵ

· wx (j)∑
Iy∈I

(
1

1(Iy ,Moy)2+ϵ
· wy(j)

) . (14)

We make the probability inversely proportional to the similar-
ity score in order to make it more likely that the medoids are
well distributed.

For an image Ix that is the medoid for a cluster Ci , its
weight factor is based on the quality of Ci in the current best
clustering. Specifically, the weight factor is computed as the
mean silhouette score of the cluster s̄i plus 1. (This keeps
its value positive because the range of the silhouette score
is [−1, 1].) For example, if s̄i is −1, the image will not be
selected as a cluster medoid. When s̄i is 1, the weight factor
increases the probability of the image being chosen as a cluster
medoid at the next iteration by a factor of two.

If an iteration results in a new best clustering, the weights of
images serving as medoids are adjusted to reflect their cluster
quality. Images that do not serve as medoids retain their weight
factor from the previous iteration. That is, for a current best

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2465

clustering C∗ of the dataset I, at an iteration j , the weight
factor for an image Ix is given by

wx (j) =

{
wx (j − 1) ·

(
s̄i + 1

)
if Ix = Mi , Mi ∈M∗

wx (j − 1) otherwise,

(15)

where M∗ is the set of cluster medoids for the current best
clustering C∗, Mi is the medoid for a cluster Ci , and wx (0) =

1. The adjustment of the weight factors in this manner also
addresses the issue presented previously in Fig. 2(a) and (b),
i.e., how to determine if isolated medoids should be merged or
stay isolated. By setting s̄i to 0.5, it becomes more likely for
these medoids to become seed medoids. Once this occurs, the
medoid in Fig. 2(a) will remain isolated, whereas the medoid
in Fig. 2(b) will be clustered with its nearest neighbors.

It is important to note that our adaptive k-medoids++
clustering algorithm applies to the similarity scores of images.
That is, instead of selecting a medoid with the smallest
distance to its cluster members as in (3), we use the image with
the maximum similarity score among all the cluster members,
i.e.,

Mi = arg max
Ix∈Ci

 ∑
Iy∈Ci

1(Ix , Iy)
2

. (16)

Because the similarity score of an image with itself is infinity,
we define it to be a large value given by the squared sum of
its similarity scores with all other images in the dataset I, i.e.,

1(Ix , Ix) =

 ∑
Iy∈I,Iy ̸=Ix

1(Ix , Iy)

2

. (17)

D. Determining the Best Clustering

Our adaptive k-medoids++ algorithm, given a cluster num-
ber k, uses the mean silhouette score of a clustering to find
the best clustering C∗(k), i.e., a clustering with the highest
mean silhouette score, s̄∗(k). Ideally, a k closer to the actual
class number results in an s̄∗(k) closer to 1, which corresponds
to a more accurate clustering. In contrast, a k farther from
the actual class number typically results in a lower value
of s̄∗(k). This correlation motivates us to use a modified
ternary search [27] to identify the best k∗ that results in the
best clustering C∗, in a computationally efficient manner as
compared to an exhaustive search. The pseudocode is shown
in Algorithm 3.

Specifically, the ternary search splits a given range of k into
three equal sub-intervals. It then retains the range that includes
the k with a better s̄∗(k) and repeats the process until the range
cannot be split. Because Algorithm 2 is probabilistic, different
executions with the same value of k may result in different best
clusterings, so that only the best clustering with the highest
value of s̄∗(k) is retained, shown in Line 14 – 18.

Like all k-medoids clustering algorithms, the initial choice
of cluster medoids may prevent clusters from being combined.
This is an inherent problem of all such algorithms and we
present a post-clustering verification procedure to address this
issue in the next subsection.

Algorithm 3 Determine the Best Clustering
Given : Similarity score matrix for an image dataset I
Result : Best number of clusters, k∗

Best clustering, C∗
1 /*Ternary search*/
2 Best mean silhouette score of a clustering, s̄∗ ← 0
3 Left and right thresholds for k values, kl ← 1 , kr ← |I|
4 repeat
5 Divide k range into thirds, km1 ← kl + round(

kr−kl
3),

km2 ← kr − round(
kr−kl

3)

6 Generate C∗m1 and s̄∗m1 using Algorithm 2 with km1
7 Generate C∗m2 and s̄∗m2 using Algorithm 2 with km2
8 if s̄∗m1 < s̄∗m2 then
9 kl ← km1

10 else if s̄∗m1 > s̄∗m2 then
11 kr ← km2
12 else
13 kl ← km1, kr ← km2

14 /*Retain current best clustering with highest s̄∗ */
15 if s̄∗m1 > s̄∗ then
16 k∗ ← km1, C∗ ← C∗m1, s̄∗ ← s̄∗m1
17 if s̄∗m2 > s̄∗ then
18 k∗ ← km2, C∗ ← C∗m2, s̄∗ ← s̄∗m2
19 until kr − kl ≤ 1;

E. Post-Clustering Verification

Our novel post-clustering verification procedure addresses
two issues that are inherent limitations of medoid-based clus-
tering algorithms that typically occur when there is a mismatch
between the parameter k and the number of true clusters. The
first issue is that there may be multiple clusters that should
be a single cluster, which occurs when k is too large. This
is due to the algorithm randomly choosing multiple images
from the same true cluster as medoid seeds. The second issue
is images that are assigned to clusters where they do not
belong, referred to as outlier images, which occurs when k
is too small. It is due to clustering algorithms being forced
to assign any non-medoid image to a cluster, resulting in
images that are far from their assigned clusters. Therefore,
the goal of our post-clustering verification procedure is to
recognize when these two issues occur and then potentially
merge similar clusters and reassign outlier images. To achieve
this goal, we employ the silhouette score, which reflects both
the confidence to which an image belongs to its own cluster
and the qualities of individual clusters in a clustering.

First, given the best clustering C∗, we determine similar
clusters that should be merged. Recall that for an image Ix ,
the nearest neighbor image is the most similar image outside
its own cluster, while the nearest neighbor cluster is the next
best-fitting cluster other than its own. Analogously, for a
cluster Ci , a companion cluster, if one exists, satisfies two
properties. It is the nearest neighbor cluster for the majority
of the images in Ci . It is also the cluster that contains the
nearest neighbor images for the majority of the images in Ci .
A cluster Ci is merged with its companion cluster C j if the
resulting mean silhouette score s̄i j of the merged cluster Ci j

is better than the average silhouette score before merging, i.e.,

Ci j = Ci ∪ C j

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

2466 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 3. The number of images of an individual leopard in the Panthera
dataset varies significantly, as illustrated in this distribution. Over half of the
leopards are represented by only a single image, which complicates the animal
ID problem.

if s̄i j >
1

|Ci | + |C j |

 ∑
Ix∈Ci

sx +
∑
Iy∈C j

sy


and

∑
Ix∈Ci

JCnn = C jK >
|Ci |

2

and
∑
Ix∈Ci

JInn ∈ C jK >
|Ci |

2
, (18)

where JQK is the Iverson bracket function, i.e., JQK = 1 if
the statement Q is true, otherwise JQK = 0. All clusters,
except for isolated images, are considered for merging. The
best clustering C∗ is updated after merging all companion
clusters.

Next, we need to determine whether an image is an outlier.
Recall that an image with a negative silhouette score may not
belong to its currently assigned cluster. This is our definition
of an outlier image. We then determine whether an outlier
image should be reassigned to its nearest neighbor cluster or
become an isolated image, i.e., a cluster by itself. For this,
we compute a value s ′x for an outlier image Ix using

s ′x =
1̄nn −max (1̄nn2, 1̄o)

1̄nn
, (19)

where Ix ∈ Cniso and sx < 0. If an outlier image is an isolated
image, s ′x is calculated using (9). The decision for determining
whether an outlier image is moved to its nearest neighbor
cluster or isolated is given by

Ix ∈

{
Cnn if s ′x ≥ T and Inn ∈ Cnn

Ciso otherwise,
(20)

where sx < 0, T is calculated using (11), and Inn is the nearest
neighbor image outside of Co with the highest similarity score
for the image Ix . After evaluating all outlier images, the entire
post-clustering verification procedure is repeatedly executed to
improve the best clustering C∗ and the corresponding cluster
number k∗ until the best mean silhouette score of the clustering
s̄∗ cannot be improved.

IV. RESULTS

Our automated individual leopard identification algorithm
is tested on a set of camera trap images of African leopards
provided by Panthera [11], an organization dedicated to the
conservation of wild cats. The images were collected over

Fig. 4. This figure plots the adjusted mutual information score (regarded
as accuracy) and mean silhouette score of a clustering s̄ during the learning
process from a typical execution of adaptive k++. These values are compared
to those for the best clustering C∗ using the baseline k++, shown in the blue
dashed line, while the best clustering C∗ using adaptive k++ is shown in
the red dashed line. The accuracy for adaptive k++ quickly increases within
the first 15 iterations to obtain much better clusterings than the best from
k++. This is due to updating the selection probabilities of medoid seeds for
adaptive k++. In addition, this figure indicates that the mean silhouette score
s̄ is a useful estimate for the quality of a clustering.

several years from multiple camera traps placed throughout
the leopards’ habitat. The dataset contains 1555 images (N) of
677 leopards (K), with the distribution of individual leopards
shown in Fig. 3. Panthera scientists provided the ground truth
by manually clustering the 1555 images into 677 animal IDs
corresponding to the right or left side of an individual animal.
(Leopards have distinct spot patterns on each side of the body.)
Several reasons cause the ratio of K/N to be relatively large in
this small dataset. These reasons include the seclusive behavior
of African leopards, their wide-ranging habitat, and the low
density of camera traps. In addition, the camera traps only
take one image when activated.

The first step of our automated identification algorithm
employs the open-source Python implementation of mask R-
CNN [26] to segment leopard bodies in images and then uses
the Hotspotter application [12] to compute similarity scores
for all segmented image pairs. Next, the algorithm executes
our novel adaptive k-medoids++ clustering technique that
uses a modified ternary search [27] to determine the best
clustering C∗ and the corresponding cluster number k∗. Finally,
the algorithm implements our new post-clustering verification
procedure to further improve the clustering accuracy and
update C∗ and k∗.

We first illustrate the improvement in the performance
of our adaptive k-medoids++ clustering technique (referred
to as adaptive k++) when compared to the traditional k-
medoids++ clustering algorithm (referred to as k++) that
we use as a baseline.2 The execution of adaptive k++ is
terminated after 50 consecutive iterations without improve-
ment in the best clustering C∗, defined as the clustering with
the highest mean silhouette score s̄∗, or after 200 iterations,
whichever comes first. To gain insight into how adaptive k++
arrives at better solutions, in Fig. 4 we present the learning
curve, i.e., accuracy as a function of iterations, from a typical
execution using the true number of leopards in the dataset,
k = 677. The accuracy value is measured by the adjusted
mutual information score [29], which is used to evaluate the

2We also compared our approach to other unsupervised techniques, e.g.,
spectral clustering [28], with comparable results in Appendix.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2467

Fig. 5. This figure shows the distribution of the clustering accuracies for the
best clusterings from 100 random executions of adaptive k++ and k++.
Both approaches were executed with k = K = 677. The baseline k++
has an average accuracy of 0.841. By updating the selection probabilities of
medoid seeds, adaptive k++ is able to improve the accuracy, on average,
by 3.7% to 0.872. Or, using verification directly on k++ improves the
accuracy, on average, by 13.8% from 0.841 to 0.957. When combining
adaptive k++ with verification, the average accuracy reaches 0.960, i.e., a
14.1% improvement over the baseline k++ value of 0.841. Note that after
verification, the cluster number k typically changes depending on the number
of reassigned outlier images and merged companion clusters.

agreement between a generated clustering and the ground
truth clustering for the dataset. We also show the curve of
the mean silhouette score s̄ to illustrate its effectiveness as a
proxy for accuracy. In this case, our best clustering accuracy
is 0.031 higher than that of the baseline k++ and it occurs
after only 15 iterations. On average, the best clustering is
identified in 50 iterations so that the algorithm terminates after
100 iterations. Because adaptive k++ adjusts the selection
probabilities of medoid seeds, better medoids are more likely
to be selected in subsequent iterations and there is rapid
improvement after only a few iterations.

We now compare the average accuracy of adaptive k++
with the baseline k++ over 100 executions. Because adaptive
k++ performs a maximum of 200 iterations, we compare the
result of one execution of it to the best clustering C∗ obtained
from 200 random executions of k++. (In other words, 20,000
executions of k++ are compared to 100 executions of adaptive
k++.) The results of this comparison are illustrated in Fig. 5
where we show the distribution of clustering accuracy for
adaptive k++. Both approaches were executed with k = K =
677. A comparison of the two distributions indicates that our
adaptive k++’s average accuracy is 0.032 higher than that of
k++. We next explore the additional improvement that can
be obtained from our post-clustering verification procedure.

We apply verification to the best clusterings generated by
adaptive k++ and the baseline k++ from the above 100 exe-
cutions. The results are shown in Fig. 5 where we display the
distributions of improved clustering accuracy. A comparison
of the two distributions before and after verification for both
clustering approaches demonstrates that verification effec-
tively improves the average clustering accuracy by 0.088 and
0.116 for adaptive k++ and k++, respectively. It is important
to note that after verification, the cluster number k typically
changes due to reassigning outlier images and merging com-
panion clusters. On average, the updated cluster number k for
adaptive k++ and k++ changes to 700 and 694, respectively.
Several reasons cause an updated cluster number k to be

Fig. 6. This figure shows correct cluster percentages as a function of cluster
sizes in the best clustering for adaptive k++ and the baseline k++. The
best clustering is from a typical execution with k = K = 677. On average,
adaptive k++ identifies more correct clusters (71.5%) than the baseline k++
(62.3%). This is because adaptive k++ updates the selection probabilities
of cluster medoid seeds in terms of their individual cluster qualities. When
followed by verification, adaptive k++ identifies 88.5% of the total number
of true clusters. Verification is particularly effective at improving performance
for large clusters, increasing the number of correct clusters from 17% to 72%
for clusters containing more than 5 images. This is due to the verification
procedure repeatedly merging companion clusters and identifying isolated
images until the clustering cannot be improved.

typically greater than the actual leopard number K . These
reasons include identifying low-quality images as isolated
images and separating the images of a single animal into
multiple clusters.

To gain further insight into the effect of adaptive k++
and verification on improving the clustering performance,
we investigated the proportion of correct clusters as a function
of cluster size. We define a correct cluster as a cluster that
is comprised of all of the images of a single leopard and
no other leopard images. The results are shown in Fig. 6
where we compare the number of correct clusters in the best
clusterings between adaptive k++ and the baseline k++ from
a typical execution with k = K = 677. This figure shows
that adaptive k++ is able to identify more correct clusters
than the baseline k++ regardless of the cluster size. For
the case of isolated images, adaptive k++ identifies 11%
more correct clusters than the baseline k++. This is because
adaptive k++ increases the probabilities of isolated images
being selected as medoids by using our expanded definition
of the silhouette score. For larger cluster sizes, adaptive
k++ is able to reduce the probabilities of multiple images
from the same true cluster being selected as cluster medoid
seeds. However, this becomes increasingly more difficult for
larger cluster sizes. For example, for clusters with more than
5 images, adaptive k++ results in a significant improvement
in correct clusters, but it still represents only 28% of the true
clusters with that cluster size. This issue is addressed by the
verification procedure.

The impact of employing verification on the best clusterings
is also shown in Fig. 6. A comparison of the correct cluster
percentages before and after verification illustrates that veri-
fication is very effective in improving the number of correct
clusters for all cluster sizes. We now discuss the mechanism
by which the improvement is achieved, as a function of cluster
size. For the case of isolated images, the combination of
adaptive k++ with verification results in 92% correct clusters,

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

2468 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 7. This figure illustrates a case where the verification procedure merges
all images from an individual leopard to a correct cluster, that initially were
separated into multiple clusters by adaptive k++. The graph shows a leopard
represented by 15 images (7 to 21). These images are initially clustered by
adaptive k++ into three clusters (images in the same initial clusters have the
same interior border colors), i.e., Cluster A includes Images 7 to 11, Cluster
B has Image 12, and Cluster C contains Images 13 to 21, because Images 10,
12, and 15 were selected as cluster medoids. After verification, these images
are merged into a single cluster, C, as the correct cluster (images in the same
cluster have the same exterior border color).

compared to just 65% for the baseline k++. This is achieved
by identifying isolated images that are incorrectly assigned to
clusters as outlier images and reassigning them to new clusters
by themselves. The impact of repeatedly merging companion
clusters and identifying isolated images becomes greater as the
cluster size increases. In particular, for clusters consisting of
two images, there is a moderate increase in correct clusters,
whereas for clusters greater than 5 images, there is a dramatic
improvement over the baseline k++, so that 72% of the
clusters are correctly identified. On average, the verification
procedure is repeated 4 times until the clustering cannot be
improved.

Next, we illustrate why large clusters are difficult for
medoid-based clustering approaches to identify correctly and
how verification can arrive at better solutions. Fig. 7 shows an
individual leopard represented by 15 images (labeled 7 to 21),
where the image layout is plotted by a force-directed graph
drawing algorithm [30] and the edges represent the similarity
scores between image pairs. Despite strong similarity scores,
these images are initially clustered into three clusters (labeled
A, B, and C), where images belonging to the same clusters
have the same interior border colors. This occurred because
Images 10, 12, and 15 were selected as cluster medoids by
adaptive k++. This illustrates why it is difficult for adaptive
k++ to identify large clusters, i.e., it is likely that they
will contain multiple medoids. Fortunately, the verification
procedure is able to merge these three clusters into a single
cluster, i.e., after verification, Cluster B is a correct cluster,
which is indicated by all images having the same exterior
border color. Specifically, verification regards Cluster A as a
companion for Cluster C and merges them together. Image
21 is identified as an outlier and reassigned to Cluster C.

Fig. 8. This figure illustrates a case where the verification procedure is not
able to merge all images of a leopard into a single cluster. The graph shows
a leopard represented by 13 images (22 to 34), where images in the same
initial clusters have the same interior border color. That is, Cluster D includes
Images 22 to 25, Cluster E contains Images 26 to 31, Cluster F has isolated
Image 32, and Cluster G involves Images 33 and 34. After verification, Cluster
D is correctly merged with Cluster E, however, Images 31 to 34 are separated
into three clusters, F, G, and H (images in the same clusters have the same
exterior border colors). This occurs because these three clusters each have
images that have high similarity scores with images from two other clusters.
Therefore, verification could not determine which clusters should be merged.

Currently, our novel verification procedure is very successful
in merging clusters when they are similar and distinct from
other clusters.

However, sometimes verification cannot correctly cluster
all images from an individual leopard into a single cluster.
One such case is illustrated in Fig. 8, which shows a leopard
represented by 13 images (labeled 22 to 34). After verification,
Cluster D is correctly merged with Cluster E, however, Images
31 to 34 are incorrectly separated into three clusters (labeled
F, G, and H). This happens because Images 31 to 34 have high
similarity scores with more than one cluster. For example,
Image 31 becomes an isolated image (Cluster H) because
verification cannot determine if it belongs to Cluster E or F.
This is not surprising, because both Images 31 and 32 should
belong to Cluster E. Likewise, Image 32 is similar to both
Clusters E and G and so stays isolated (Cluster F). Cluster
G is not merged with Cluster E, because even though Image
34 is very similar to Image 29, the nearest neighbor for Image
33 is Image 32.

Finally, we demonstrate the effectiveness of the modified
ternary search that employs the mean silhouette score of
a clustering s̄ to identify the best clustering C∗ and the
corresponding cluster number k∗. Recall that Fig. 4 indicates
s̄ is a useful proxy to evaluate the performance of a clustering.
To determine C∗ and k∗, we present the ternary search curve,
i.e., the best silhouette score s̄∗(k) as a function of the cluster
number k. The result is illustrated in Fig. 9, where we also
plot the accuracy of the resulting clusterings as measured
by the adjusted mutual information score. The goal is to
identify the best clustering C∗ with the largest value of s̄∗ and

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2469

TABLE I
ALGORITHM ACCURACY

Fig. 9. This plot shows the results of the modified ternary search, where
the adjusted mutual information score (regarded as accuracy) and best mean
silhouette score s̄∗(k) as functions of the cluster number k. The modified
ternary search identified the best clustering with the highest s̄∗(k) after
executing adaptive k++ on the selected values of k. The accuracy of the
best clustering C∗ is 0.896 and the corresponding cluster number k∗ is 739.

its corresponding value of k∗ in a computationally efficient
manner. The final best clustering results in an s̄∗ = 0.782 and
a k∗ = 739 with a clustering accuracy of 0.896. After
verification, the accuracy of the best clustering is improved
to 0.958, and the updated cluster number becomes 718.

To illustrate another method for evaluating a clustering,
we classify all clusters in a clustering into three different
types, i.e., correct, partially correct, and incorrect. Recall that
a correct cluster has all of the images from an individual
leopard and no other leopard images. Similarly, we define a
partially correct cluster as a cluster with some (but not all)
of the images of a particular leopard and no images of any
other leopards. If a cluster is neither a correct nor partially
correct cluster, then it is defined as incorrect. The results of
applying this evaluation method are shown in Table I where
we compare the number of different cluster types in the best
clustering C∗ obtained from the baseline algorithm and our
approach. Specifically, after verification, the best clustering
for adaptive k++ obtains a significant improvement over the
baseline algorithm, i.e., 85.9% correct clusters as compared to
69.8% for the baseline k++.

Table I also reflects the improvement in the number of par-
tially correct clusters, reducing them from 27.7% to 12.7% of
the total number of clusters. However, there are still 91 clusters
that are only partially correct. This is because it is difficult for
verification to decide which cluster an image belongs to if the

Fig. 10. This figure shows the accuracy (measured by adjusted mutual
information score) for the best clusterings of the baseline k++ and adaptive
k++ with verification under different values of brightness factor β. Both
algorithms were executed with k = K = 677. When the illumination level
changes up to 70%, our adaptive k++ with verification still gets a good
accuracy, 0.905, compared to the baseline k++, 0.740. In addition, this figure
displays the ratio of images in the three types of clusters (correct, partially
correct, incorrect) in the best clusterings for adaptive k++ with verification
under different values of β. When β = 0.5, our adaptive k++ achieves 77%
images belonging to correct clusters while only 6.4% images are assigned to
incorrect clusters.

image is similar to more than one cluster. Fig. 8 illustrates
an example of this where verification separates images from
an individual leopard into several partially correct clusters.
In addition, in the best clustering, adaptive k++ followed by
verification reduces the number of incorrect clusters to 1.4%.
It is unlikely that one can reduce this number to zero, because
these clusters contain images that are either of poor quality or
only contain partial leopards.

We performed further experiments on the robustness of our
algorithm to image quality, i.e., under- and over- exposure
of images. Specifically, we randomly selected 1/3 of the
dataset images to be underexposed, 1/3 to be overexposed,
and 1/3 unchanged. For overexposed images, every pixel value
is multiplied by 1+β; for underexposed images, every pixel
value is multiplied by 1-β, where the brightness factor β is
varied from 0.1 to 0.7. The results are shown in Fig. 10,
where the performance of the baseline k++ and adaptive k++
with verification as a function of the brightness factor are
displayed. In terms of the adjusted mutual information score,
the accuracy of baseline k++ drops 12.6% from the original
0.847 to 0.740 when the brightness factor increases to 0.7. Our
adaptive k++ with verification is more robust to illumination
changes, and it still achieves 0.905 accuracy, only dropping
6.0% from 0.963. In addition, in terms of incorrectly identified
images, our algorithm is able to maintain a reasonably small
number of such images up to a 50% change (β = 0.5) in

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

2470 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 11. This distribution illustrates the significant variation in the number
of images of an individual snow leopard in the Panthera dataset. Two clusters
have over 40 images each.

TABLE II
ALGORITHM ACCURACY

the illumination levels for 2/3 of the images. One reason
that adaptive k++ with verification prevents making errors is
because it is able to identify the extremely low quality images
as outliers and isolates them, instead of attributing them to an
incorrect cluster.

Finally, we evaluated how our algorithm generalizes to
camera trap images of other animals with distinct spot patterns,
i.e., snow leopards, also provided by Panthera [11]. The
distribution of the snow leopard dataset, which is shown in
Fig. 11, is quite different from the African leopard dataset.
This dataset is even smaller, i.e., N = 224, and also a smaller
ratio of K/N , where the number of snow leopards, K = 18.
The results are shown in Table II, where we compare the
number of images in three different cluster types (correct,
partially correct, incorrect) in the best clusterings obtained
from k++ and adaptive k++ with verification, as determined
by our expanded silhouette score. Our adaptive k++ with
verification does not result in any incorrectly clustered images
and has more than double the number of completely correct
images as compared to the baseline k++. The reason for the
relatively large number of partially correct images as compared
to the African leopard dataset is due to the radically different
distributions of numbers of individuals in a cluster. In par-
ticular, for the snow leopard dataset, 132 of the 224 images
belong to only 4 individuals, with two clusters having over
40 images each, whereas for the African leopard dataset, over
half of the individuals belong to isolated clusters. Therefore
the situation that is illustrated in Fig. 8 occurs more frequently
for the snow leopard dataset.

V. CONCLUSION

In this paper, we propose an effective algorithm to auto-
matically identify individual animals in a dataset of unlabeled
camera-trap images of African leopards, provided by Panthera.
This work is currently done by experts and is time consuming
and error prone. Our algorithm consists of a modified ternary
search that uses a novel adaptive k-medoids++ clustering

Fig. 12. This figure plots the clustering accuracies (measured by adjusted
mutual information score) for the best clusterings of adaptive k++ with
verification and p-nn spectral for different values of p. Both approaches
were executed with k = K = 677. The accuracy of our adaptive k++ with
verification, 0.963, is higher than the overall of p-nn spectral, e.g., the best
result of p-nn spectral (p = 4), 0.938. Note that to display the representative
result of p-nn spectral, we used an optimal number of eigenvectors, 100,
under a range of values.

algorithm to determine the best clustering and the corre-
sponding cluster number. Our adaptive k++ introduces a
weight factor for each image to adjust the probability of
the image being chosen as a cluster medoid seed during
iterations. The weight of an image that is a cluster medoid is
adaptively adjusted to reflect its cluster quality, measured by
an expanded definition of the silhouette score. Our silhouette
score is an effective proxy to evaluate the performance of
clustering and the quality of a single cluster. In addition,
to further improve the clustering performance, we propose a
post-clustering verification procedure to potentially reassign
outlier images and merge companion clusters. Future work will
address the effects of multiple medoid seeds in large clusters
by combining images that are similar to more than one cluster.

APPENDIX

COMPARISON TO SPECTRAL CLUSTERING

To further validate the effectiveness of our adaptive
k-medoids++ clustering technique, we have selected an addi-
tional unsupervised technique to evaluate and compare to
our approach. The technique we selected is spectral clus-
tering based on p nearest neighbor graph (p-nn spectral)
[28] because it (1) also uses a similarity matrix, (2) is
fundamentally different than k++, and (3) has a reputation
for better performance on our type of dataset. Unfortunately,
p-nn spectral requires three parameters: (1) the number of
clusters (k), (2) the number of nearest neighbors (p), and (3)
the number of eigenvectors, which makes the algorithm more
difficult to apply. However, we selected a range of parameters
and showed a representative result of variation as a function
of p, using the true value of k, and an optimal number
of eigenvectors, 100. The comparison results are shown in
Fig. 12, which plots the clustering accuracies of the best
clusterings for our adaptive k++ with verification and p-
nn spectral under different values of p. This figure indicates
the accuracy of our approach is higher than the overall p-nn
spectral. Once again, it is important to note that this result
is unachievable in practice because it requires an oracle that
provides the optimal values for p, k, and the best number of
eigenvectors.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: AUTOMATIC IDENTIFICATION OF INDIVIDUAL AFRICAN LEOPARDS 2471

ACKNOWLEDGMENT

The authors would like to thank Panthera for providing the
camera trap data set.

REFERENCES

[1] M. S. Norouzzadeh et al., “Automatically identifying, counting, and
describing wild animals in camera-trap images with deep learning,”
Proc. Nat. Acad. Sci. USA, vol. 115, no. 25, pp. E5716–E5725,
Jun. 2018.

[2] D. Tuia et al., “Perspectives in machine learning for wildlife conserva-
tion,” Nature Commun., vol. 13, no. 1, pp. 1–15, 2022.

[3] M. Vidal, N. Wolf, B. Rosenberg, B. P. Harris, and A. Mathis, “Per-
spectives on individual animal identification from biology and computer
vision,” Integrative Comparative Biol., vol. 61, no. 3, pp. 900–916,
Oct. 2021.

[4] S. Schneider, G. W. Taylor, S. Linquist, and S. C. Kremer, “Past, present
and future approaches using computer vision for animal re-identification
from camera trap data,” Methods Ecol. Evol., vol. 10, no. 4, pp. 461–470,
2019.

[5] S. Kumar and S. K. Singh, “Visual animal biometrics: Survey,” IET
Biometrics, vol. 6, no. 3, pp. 139–156, May 2017.

[6] E. Nepovinnykh, T. Eerola, H. Kälviäinen, and G. Radchenko, “Identifi-
cation of saimaa ringed seal individuals using transfer learning,” in Proc.
Int. Conf. Adv. Concepts Intell. Vis. Syst. Cham, Switzerland: Springer,
2018, pp. 211–222.

[7] E. Nepovinnykh, T. Eerola, and H. Kälviäinen, “Siamese network based
pelage pattern matching for ringed seal re-identification,” in Proc. IEEE
Winter Appl. Comput. Vis. Workshops (WACVW), Mar. 2020, pp. 25–34.

[8] S. Li, J. Li, H. Tang, R. Qian, and W. Lin, “ATRW: A benchmark for
amur tiger re-identification in the wild,” in Proc. 28th ACM Int. Conf.
Multimedia, Oct. 2020, pp. 2590–2598.

[9] P. Chen et al., “A study on giant panda recognition based on images
of a large proportion of captive pandas,” Ecol. Evol., vol. 10, no. 7,
pp. 3561–3573, Apr. 2020.

[10] C. V. Stewart, J. R. Parham, J. Holmberg, and T. Y. Berger-Wolf, “The
animal id problem: Continual curation,” 2106, arXiv:2106.10377.

[11] Panthera. (2019). An Image Dataset of Wild African Leopards. [Online].
Available: https://panthera.org/

[12] J. P. Crall, C. V. Stewart, T. Y. Berger-Wolf, D. I. Rubenstein, and
S. R. Sundaresan, “HotSpotter—Patterned species instance recognition,”
in Proc. IEEE Workshop Appl. Comput. Vis. (WACV), Jan. 2013,
pp. 230–237.

[13] S. Nayeri, M. Sargolzaei, and D. Tulpan, “A review of traditional and
machine learning methods applied to animal breeding,” Animal Health
Res. Rev., vol. 20, no. 1, pp. 31–46, Jun. 2019.

[14] D. T. Bolger, T. A. Morrison, B. Vance, D. Lee, and H. Farid, “A
computer-assisted system for photographic mark–recapture analysis,”
Methods Ecol. Evol., vol. 3, no. 5, pp. 813–822, Oct. 2012.

[15] T. Chehrsimin et al., “Automatic individual identification of saimaa
ringed seals,” IET Comput. Vis., vol. 12, no. 2, pp. 146–152, Mar. 2018.

[16] A. Miguel, J. S. Beard, C. Bales-Heisterkamp, and R. Bayrakcismith,
“Sorting camera trap images,” in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Nov. 2017, pp. 249–253.

[17] J. Duyck, C. Finn, A. Hutcheon, P. Vera, J. Salas, and S. Ravela, “Sloop:
A pattern retrieval engine for individual animal identification,” Pattern
Recognit., vol. 48, no. 4, pp. 1059–1073, Apr. 2015.

[18] S. Schneider, G. W. Taylor, and S. C. Kremer, “Similarity learning net-
works for animal individual re-identification–beyond the capabilities of
a human observer,” in Proc. IEEE Winter Appl. Comput. Vis. Workshops
(WACVW), Mar. 2020, pp. 44–52.

[19] C. Geng, S. Huang, and S. Chen, “Recent advances in open set
recognition: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3614–3631, Oct. 2021.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[21] M. Perd’och, O. Chum, and J. Matas, “Efficient representation of local
geometry for large scale object retrieval,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 9–16.

[22] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” J. Roy. Stat. Soc. Ser. C, Appl. Statist., vol. 28,
no. 1, pp. 100–108, 1979.

[23] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for K-medoids
clustering,” Expert Syst. Appl., vol. 36, no. 2, pp. 3336–3341, Mar. 2009.

[24] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms,
2007, pp. 1027–1035.

[25] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397,
Feb. 2020.

[27] M. S. Bajwa, A. P. Agarwal, and S. Manchanda, “Ternary search
algorithm: Improvement of binary search,” in Proc. 2nd Int. Conf. Com-
put. Sustain. Global Develop. (INDIACom), Mar. 2015, pp. 1723–1725.

[28] U. von Luxburg, “A tutorial on spectral clustering,” Statist. Comput.,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[29] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: Variants, properties, normalization and cor-
rection for chance,” J. Mach. Learn. Res., vol. 11, pp. 2837–2854,
Dec. 2010.

[30] T. M. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Softw., Pract. Exper., vol. 21, no. 11,
pp. 1129–1164, 1991.

Cheng Guo (Student Member, IEEE) received the
M.S. degree in electrical engineering and automa-
tion from the University of Jinan, Jinan, Shandong,
China, in 2015. She is currently pursuing the
Ph.D. degree in computer engineering with Colorado
State University, Fort Collins, CO, USA.

Her research interests include image processing.

Agnieszka Miguel (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical engineering
from Florida Atlantic University, Boca Raton, FL,
USA, in 1994 and 1996, respectively, and the Ph.D.
degree in electrical engineering from the University
of Washington, Seattle, WA, USA, in 2001. She is
currently a Professor and the Chair of Electrical
and Computer Engineering with Seattle University,
Seattle, WA, USA. Her research interests include
data compression, image processing, and engineer-
ing education.

Anthony A. Maciejewski (Fellow, IEEE) received
the B.S., M.S., and Ph.D. degrees in electrical engi-
neering from The Ohio State University, Columbus,
OH, USA, in 1982, 1984, and 1987, respectively.

From 1988 to 2001, he was a Professor in electrical
and computer engineering with Purdue University,
West Lafayette, IN, USA. He is currently a Professor
in electrical and computer engineering with Col-
orado State University, Fort Collins, CO, USA. His
research interests include robotics, high-performance
computing, and engineering education.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 01,2025 at 06:30:23 UTC from IEEE Xplore. Restrictions apply.

